

Research Paper

CONVOLUTION WEIGHTED ORLICZ ALGEBRAS IN CONTEXT OF σ -COMPACT GROUPS

ALIREZA BAGHERI SALEC

ABSTRACT. In this paper, some sufficient condition for a weighted Orlicz space, $L_w^{\Phi}(G)$, to be a Banach algebra with convolution as multiplication in context of a σ -compact groups. We also for a class of Orlicz spaces, obtain an equivalent condition, such that a weighted Orlicz space to be a convolution Banach algebra. This results generalized some known results in Lebesgue spaces.

MSC(2010): 46E30; 43A15. **Keywords:** locally compact group, σ -compact group, convolution algebra, weighted Orlicz space, Orlicz spaces.

1. Introduction and Background

The condition that the Lebesgue spaces become an algebra by convolution multiplication has always been considered. It is known that for each locally compact group G, $L^1(G)$ is a convolution Banach algebra, and for each p > 1, $L^p(G)$ is a convolution algebra if and only if G is compact ([4], [15]). Kuznetsova in [8] proved that $L^1_w(G)$ is convolution Banach algebra if and only if w is submultiplicative, and in the case of G is abelian for a p > 1 and a weight $w L^p_w(G)$ is a convolution algebra if and only if G is σ -compact.

Given that Orlicz spaces are a very important generalization of Lebesgue spaces, the natural question is when Orlicz spaces or weighted Orlicz spaces are convolution Banach algebra. For a locally compact abelian group G and a Δ_2 -regular Young function Φ , H. Hudzik, A. Kamiska and J. Musielak in [6] prove that the Orlicz space $L^{\Phi}(G)$ is a convolution Banach algebra if and only if $L^{\Phi}(G) \subseteq L^1(G)$, and this holds if and only if G is compact or $\lim_{x\to 0^+} \frac{\Phi(x)}{x} > 0$. In [1, 13, 14] another necessary and sufficient condition for an Orlicz space $L^{\Phi}(G)$, and its weighted version $L^{\Phi}_w(G)$, to be a convolution Banach algebra is given. Also to observe similar results with the context of hypergroups see [2, 12].

In this paper, G is a locally compact group and λ is the left Haar measure on G. Let recall some properties of Orlicz spaces. For more details see three books [7, 10, 11] which are basic references for this subject.

A Young function is a convex even mapping $\Phi : \mathbb{R} \to [0, \infty]$ such that $\Phi(0) = \lim_{x \to 0} \Phi(x) = 0$ and $\lim_{x \to \infty} \Phi(x) = \infty$. A Young function $\Phi : \mathbb{R} \to [0, \infty)$ is called an *N*-function if it is continuous, $\Phi(x) = 0$ implies x = 0, $\lim_{x \to 0} \frac{\Phi(x)}{x} = 0$ and $\lim_{x \to \infty} \frac{\Phi(x)}{x} = \infty$.

Date: Received: February 1, 2022, Accepted: June 2, 2022.

^{*}Corresponding author.

A.R. BAGHERI SALEC

The *complementary* of a Young function Φ is the function Ψ defined by

$$\Psi(x) := \sup\{y|x| - \Phi(y) : y \ge 0\}, \quad (x \in \mathbb{R}).$$

If Ψ is the complementary of a Young function Φ , then (Φ, Ψ) is called a *Young pair*. If we denote the set of all Borel measurable complex-valued functions on G by $\mathcal{B}(G)$, then the Orlicz space $L^{\Phi}(G)$ define by

$$L^{\Phi}(G) = \{ f \in \mathcal{B}(G) : \exists \alpha > 0, \int_{G} \Phi(\alpha | f(x)|) \, d\lambda(x) < \infty \}.$$

For each Young pair (Φ, Ψ) we denote the set of all $f \in \mathcal{B}(G)$ with $\int_G \Phi(|f(x)|) d\lambda(x) \leq 1$ by B_{Φ} . Then we can define for each $f \in L^{\Phi}(G)$ the Orlicz norm $||f||_{\Phi}$ and Luxemburg norm $||f||_{[\Phi]}$ respectively by

$$\|f\|_{\Phi} := \sup\left\{\int_{G} |f(x)g(x)| \, d\lambda(x) : g \in B_{\Psi}\right\}$$
$$\|f\|_{[\Phi]} := \inf\left\{\alpha > 0 : \frac{1}{\alpha} \, f \in B_{\Phi}\right\}.$$

If almost everywhere equal functions in $L^{\Phi}(G)$ consider the same, then $\|\cdot\|_{\Phi}$ and $\|\cdot\|_{[\Phi]}$ are equalivalent normes on $L^{\Phi}(G)$ with

(1.1)
$$||f||_{[\Phi]} \le ||f||_{\Phi} \le 2||f||_{[\Phi]}.$$

For each $f \in L^{\Phi}(G)$ and $g \in L^{\Psi}(G)$, we have the *Hölder's inequality* for Orlicz spaces (see[10, Proposition 1, and the Remark after it, page 58]):

(1.2)
$$\int_{G} |f(x)g(x)| \, d\lambda(x) \leq 2 \|f\|_{[\Phi]} \, \|g\|_{[\Psi]}.$$

A continuous positive function w on G called a *weight*. Similar to other function spaces, the *weighted Orlicz space*, $L_w^{\Phi}(G)$, is defined by

$$L^{\Phi}_w(G) = \{ f \in \mathcal{B}(G) : wf \in L^{\Phi}(G) \}.$$

 $L^{\Phi}_w(G)$ with the norm $||f||_{\Phi,w} := ||wf||_{\Phi}$ is a Banach space.

2. Main Results

Our motivation for giving the main result of this paper is to provide a generalization for [8, Theorem 1.1]. In that theorem it has been proved that a locally compact group G is σ -compact if and only if for any p > 1 there exists a weight w such that $w^{-q} * w^{-q} < w^{-q}$, if and only if for any p > 1 there exists a weight w such that $L_w^{\Phi}(G)$ is a convolution Banach algebra. Recall that for any measurable functions f and g on G, the convolution product f * g is defined by

$$(f*g)(x) := \int_G f(y)g(y^{-1}x) \, d\lambda(y)$$

for all $x \in G$, while this integral exists. Also the weighted Orlicz space $L_w^{\Phi}(G)$ is called a *convolution Banach algebra* if there exists a constant D > 0 such that

$$||f * g||_{\Phi,w} \le D ||f||_{\Phi,w} ||g||_{\Phi,w},$$

for all $f, g \in L^{\Phi}_w(G)$.

98

In sequel, for each weight function w on G, we define $\Omega_w : G \times G \to (0, \infty)$ by

$$\Omega_w(x,y) = \frac{w(yx)}{w(x)w(y)}.$$

Also, we say that a Young function Ψ is satisfied the property (\mathcal{A}) whenever, for each σ compact group G there exists a weight w on G and there exists a real number C > 0 such
that for all $v \in B_{\Psi}$, the function $H_v(y) := \|\Omega_w(\cdot, y)L_{y^{-1}}|v|\|_{\Psi}, (y \in G)$ belongs to $L^{\Psi}(G)$ and $\|H_v\|_{\Psi} \leq C$ where for each function f on G and each $y \in G$, the function $L_y f$ on G define
by $L_y f(x) = f(y^{-1}x)$.

Remark 2.1. By [8, Theorem 1.1] easily one can see that for each $1 < q < \infty$, the Young function $\Psi_q := |\cdot|^q$ satisfies the property (\mathcal{A}) .

Indeed for each locally compact group G by [8, Theorem 1.1] always there exists a weight w such that $w^{-q} * w^{-q} < w^{-q}$. So for each $v \in B_{\Psi_q}$ we have

$$\begin{split} \|H_v\|_{\Psi_q} &= \left(\int_G (H_v(y))^q \, dy\right)^{\frac{1}{q}} \\ &= \left(\int_G (\|\Omega_w(\cdot, y)L_{y^{-1}}|v|\|_{\Psi_q})^q \, dy\right)^{\frac{1}{q}} \\ &= \left(\int_G \int_G |\Omega_w(x, y)L_{y^{-1}}v(x)|^q \, dx \, dy\right)^{\frac{1}{q}} \\ &= \left(\int_G \int_G \frac{w(yx)^q}{w(x)^q w(y)^q} |v(yx)|^q \, dx \, dy\right)^{\frac{1}{q}} \\ &= \left(\int_G w(x)^q |v(x)|^q (\int_G \frac{1}{w(y)^q w(y^{-1}x)^q} \, dy) \, dx\right)^{\frac{1}{q}} \\ &= \left(\int_G w(x)^q |v(x)|^q (w^{-q} * w^{-q})(x) \, dx\right)^{\frac{1}{q}} \\ &\leq \left(\int_G |v(x)|^q x\right)^{\frac{1}{q}} \\ &= \|v\|_{\Psi_q} \le 1. \end{split}$$

Therefore Ψ_q satisfies the property (\mathcal{A}) with C = 1.

Before stating the main thesis of this article we also recall that for a locally compact abelian group G, a weight function w and a complementary pair of Young functions (Φ, Ψ) a function $\xi : G \to \mathbb{C} \setminus \{0\}$ is called a *generalized character* if $\xi(xy) = \xi(x)\xi(y)$ for all $x, y \in G$, and $\frac{\xi}{w} \in L^{\Psi}(G)$. The set of all generalized characters of G is denoted by $\widehat{G_{\Psi}}(w)$.

Theorem 2.2. Let G be a locally compact group. Then, the following conditions are equivalent:

- (1) G is σ -compact.
- (2) There are a complementary pair (Φ, Ψ) of N-functions in which for some weight function w, we have $\frac{1}{w} \in L^{\Psi}(G)$ and

$$\Psi(\frac{1}{w}) * \Psi(\frac{1}{w}) \le \Psi(\frac{1}{w}).$$

A.R. BAGHERI SALEC

(3) For all complementary pair (Φ, Ψ) of N-functions there exists some weight function w such that $\frac{1}{w} \in L^{\Psi}(G)$ and

$$\Psi(\frac{1}{w}) * \Psi(\frac{1}{w}) \le \Psi(\frac{1}{w}).$$

If G is abelian, then the above conditions are equivalent to the following conditions:

- (4) There are a complementary pair (Φ, Ψ) of N-functions in which Ψ satisfies the property
 (A) for some weight w on G, and L^Φ_w(G) is a convolution Banach algebra.
- (5) For each complementary pair (Φ, Ψ) of N-functions in which Ψ satisfies the property (\mathcal{A}) for some weight w on G, $L^{\Phi}_{w}(G)$ is a convolution Banach algebra.

Proof. (2) \Rightarrow (1): Let (Φ, Ψ) be a complementary pair of *N*-functions and *w* be a weight on *G* such that $\frac{1}{w} \in L^{\Psi}(G)$. Then for some $\alpha > 0$, we have $\Psi(\frac{\alpha}{w}) \in L^{1}(G)$. Since $\Psi(t) = 0$ implies that t = 0, and $\Psi(\frac{\alpha}{w}) > 0$ on *G*, we have

$$G=\{x\in G:\,\Psi(\frac{\alpha}{w})>0\},$$

and so thanks to [3, Proposition 2.20] and [4, Theorem 1.40], G is σ -compact.

(1) \Rightarrow (3): Let G be a σ -compact group. By the proof of [8, Theorem 1.1], there is an integrable function u > 0 such that $u * u \leq u$. Now for each N-function Ψ if we put $w := \frac{1}{\Psi^{-1}(u)}$, then we have $\frac{1}{w} \in L^{\Psi}(G)$ and $\Psi(\frac{1}{w}) * \Psi(\frac{1}{w}) \leq \Psi(\frac{1}{w})$.

Since $(3) \Rightarrow (2)$ is trivial, the conditions 1 - 3 are equalvalent.

(1) \Rightarrow (5): Let *G* be a σ -compact group. Then for all pairs (Φ, Ψ) of *N*-functions such that Ψ satisfies the prperty (\mathcal{A}), there exists a weight *w* on *G* that satisfies the property (\mathcal{A}). Suppose that $f, g \in L^{\Phi}_{w}(G)$. Then for each $v \in B_{\Psi}$, since for almost every elements $y \in G$ we have $\|\Omega_w(\cdot, y)L_{y^{-1}}|v|\|_{\Psi} < \infty$, thanks to Hölder's inequality (1.2) and inequality (1.1) we have

$$\begin{split} \int_{G} |(f * g)(x)| \ w(x) |v(x)| d\lambda(x) \\ &\leq \int_{G} |f(y)| w(y) \int_{G} |g(x)| w(x) \frac{w(yx)}{w(x)w(y)} |v(yx)| d\lambda(x) d\lambda(y) \\ &\leq 2 \int_{G} |f(y)| w(y) \|fw\|_{\Phi} \|\Omega_{w}(\cdot, y) L_{y^{-1}} |v|\|_{\Psi} d\lambda(x) d\lambda(y) \\ &\leq 4 \|f\|_{\Phi,w} \|g\|_{\Phi,w} \|H\|_{\Psi} \\ &\leq 4C \|g\|_{\Phi,w} \|f\|_{\Phi,w}. \end{split}$$

So we have $||f * g||_{\Phi,w} \leq 4C ||f||_{\Phi,w} ||g||_{\Phi,w}$ and $L^{\Phi}_w(G)$ is a convolution algebra.

Now, let G be abelian.

 $(4) \Rightarrow (1)$: Let $L_w^{\Phi}(G)$ be a convolution algebra. Since G is abelian, by [9, Proposition. 5.7] $L_w^{\Phi}(G)$ is not radical. This implies that there exists a non-zero homomorphism T from $L_w^{\Phi}(G)$ into \mathbb{C} , and so by [9, Theorem 5.2], there exists an element $\eta \in \widehat{G}_{\Psi}(w)$ such that

$$T(f) = \int_G f \eta \, d\lambda, \qquad (f \in L^{\Phi}_w(G)).$$

Hence we have $\frac{\eta}{w} \in L^{\Psi}(G)$. In other words, there exists an $\alpha > 0$ such that $\Psi(\frac{|\eta|}{\alpha w}) \in L^1(G)$. Therefore G is σ -compact.

100

By [5, Proposition 5] and [9, Lamma 4.3], for any N-function Ψ , $L^{\Psi}(G)$ is a Banach algebra with respect to pointwise multiplication if and only if $L^{\Psi}(G) \subseteq L^{\infty}(G)$ if and only if G is discrete. Using these facts, we can express the following conclusion.

Corollary 2.3. Let G be a discrete group. Then for any weight w on G such that

- (1) for each $y \in G$, $\Omega_w(\cdot, y) \in B_{\Psi}$ and,
- (2) if $H(y) = \|\Omega_w(\cdot, y)\|_{\Psi}, (y \in G)$, then $H \in L^{\Psi}(G)$,

 $\ell^{\Phi}_{w}(G)$ is a convolution Banach algebras.

Proof. Since G is discrete, by [5, Proposition 5] and [9, Lamma 4.3], $\ell^{\Psi}(G)$ is Banach algebra with respect to pointwise multiplication. So there exsists a real number B such that for each $f, g \in \ell^{\Psi}(G)$ we have $\|fg\|_{\Psi} \leq B \|f\|_{\Psi} \|fg\|_{\Psi}$. By substituting $\frac{1}{B}\Psi$ for Ψ , conditions (1) and (2) imply that if $v \in B_{\Psi}$, then

(1) for each $y \in G$,

$$\|\Omega_w(\cdot, y)L_{y^{-1}}\|v\|_{\Psi} \le \|\Omega_w(\cdot, y)\|_{\Psi}\|L_{y^{-1}}\|v\|_{\Psi} \le \|\Omega_w(\cdot, y)\|_{\Psi}$$
, and

(2) the function $H(y) = \|\Omega_w(\cdot, y)L_{y^{-1}}|v|\|_{\Psi}(y \in G)$, belongs to B_{Ψ} ,

since the mapping $x \mapsto v(yx)$ belongs to B_{Ψ} . So the Young function Ψ is satisfied the property (\mathcal{A}) and by Theorem 2.2, $\ell_w^{\Phi}(G)$ is a convolution Banach algebra.

Before stating the next corollary, we remind that a Young function Φ satisfies Δ_2 -condition (and write $\Phi \in \Delta_2$) if there are c > 0 and $x_0 \ge 0$ such that

$$\Phi(2x) \le c \,\Phi(x), \quad (x \ge x_0)$$

Corollary 2.4. If Ψ is globally Δ_2 -regular and w is a weight on \mathbb{Z} such that

(2.1)
$$\exists \beta > 0, \forall m, n \in \mathbb{Z}, \forall v \in B_{\Psi}, \Omega_{\omega}(m, n) | v(m - n) | \leq \frac{\beta}{(|m| + 1)(|n| + 1)}$$

then $\ell_w^{\Phi}(\mathbb{Z})$ is a convolution Banach algebras.

Proof. Since $\Psi \in \Delta_2$ globally by [10, Chapter II, Corollary 5] there exist a real numbers M > 0 and $\alpha > 1$ such that for all $x \in \mathbb{R}$, $\Psi(x) \leq M|x|^{\alpha}$. So by (2.1) for each $n \in \mathbb{N}$ we have

$$\int_{\mathbb{Z}} \Psi(\Omega_{\omega}(\cdot, n)L_{-n}|v|) = \sum_{m=-\infty}^{+\infty} \Psi(\Omega_{\omega}(m, n)L_{-n}|v|)$$

$$\leq \sum_{m=-\infty}^{+\infty} M \left|\Omega_{\omega}(m, n)L_{-n}|v|\right|^{\alpha}$$

$$\leq \sum_{m=-\infty}^{+\infty} M \left(\frac{\beta}{(|m|+1)(|n|+1)}\right)^{\alpha}$$

$$= \frac{M\beta^{\alpha}}{(1+|n|)^{\alpha}} \sum_{m=-\infty}^{+\infty} \frac{1}{(1+|m|)^{\alpha}}$$

$$\leq M\beta^{\alpha} \sum_{m=-\infty}^{+\infty} \frac{1}{(1+|m|)^{\alpha}}$$

$$= M\beta^{\alpha}(2\zeta(\alpha)-1) < \infty,$$

where ζ is the Riemann zeta function.

On the other hand if $f \in B_{\Phi}$ we have $\sum_{m=-\infty}^{+\infty} |\Phi(f(m))| \leq 1$. So that for each $m \in \mathbb{Z}$ we have $|\Phi(f(m))| \leq 1$. Therefore for each $n \in \mathbb{Z}$ we see that

$$\begin{aligned} \|\Omega_{\omega}(\cdot,n)L_{-n}|v|\|_{\Psi} &= \sup\{\sum_{m=-\infty}^{+\infty} |\Omega_{\omega}(m,n)v(m-n)f(m)| : f \in B_{\Phi}\} \\ &\leq \Phi^{-1}(1)\sum_{m=-\infty}^{+\infty} |\Omega_{\omega}(m,n)v(m-n)| \end{aligned}$$

So for the function $H: y \mapsto \|\Omega_{\omega}(\cdot, n)L_{-n}|v|\|_{\Psi}$ we have

$$\begin{split} \int_{\mathbb{Z}} \Psi(H) &= \sum_{n=-\infty}^{+\infty} \Psi(H)(n) \\ &\leq \sum_{n=-\infty}^{+\infty} \Psi\left(\Phi^{-1}(1) \sum_{m=-\infty}^{+\infty} |\Omega_{\omega}(m,n)v(m-n)|\right) \\ &\leq \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} M \left|\Phi^{-1}(1)\Omega_{\omega}(m,n)v(m-n)\right|^{\alpha} \\ &\leq \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} M \Phi^{-1}(1)^{\alpha} \left(\frac{\beta}{(|m|+1)(|n|+1)}\right)^{\alpha} \\ &= M \Phi^{-1}(1)^{\alpha} \beta^{\alpha} (2\zeta(\alpha)-1)^{2}. \end{split}$$

If $\gamma = \max\{M\beta^{\alpha}(2\zeta(\alpha) - 1), M\Phi^{-1}(1)^{\alpha}\beta^{\alpha}(2\zeta(\alpha) - 1)^{2}\}$ then considering $\frac{\Psi}{\gamma}$ instead of Ψ it is observed that Ψ is true in the condition of of Theorem 2.2, so that $\ell^{\Phi}_{w}(\mathbb{Z})$ is a convolution Banach algebras.

References

- A. Bagheri Salec and S. M. Tabatabaie, Some Necessary and Sufficient Conditions for Convolution Weighted Orlicz Algebras. Bull. Iran. Math. Soc., https://doi.org/10.1007/s41980-021-00655-y, 2021.
- [2] A. Bagheri Salec, V. Kumar and S. M. Tabatabaie, Convolution property of Orlicz spaces on hypergroups. Proc. Amer. Math. Soc., 150(4): 1685–1696, 2022.
- [3] G.B. Folland, Real Analysis; Modern Techniques and Their Applications 2nd Edition, John Wiley and Sons, Inc., New York, 1999.
- [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer New York, NY, 1979.
- [5] H. Hudzik, Orlicz spaces of essentially bounded functions and Banach-Orlicz algebras, Arch. Math., 44 (1985) 535-538.
- [6] H. Hudzik, A. Kamiska and J. Musielak, On some Banach algebras given by a modular, in: Alfred Haar Memorial Conference, Budapest, Colloquia Mathematica Societatis J anos Bolyai (North Holland, Amsterdam), 49 (1987) 445–463.
- [7] M. A. Krasnosel'skii and Ja. B. Rutickii, Convex Functions and Orlicz Spaces. Noordhoff, Groningen, 1961.
- [8] Yu. N. Kuznetsova, Invariant weighted algebras $L_p^w(G)$, Math. Notes, **84** (4) (2008) 529–537.
- [9] A. Osançliol and S. Öztop, Weighted Orlicz algebras on locally compact groups, J. Aust. Math. Soc., 99 (2015) 399-414.
- [10] M.M. Rao and Z.D. Ren, *Theory of Orlicz Spaces*, Marcel Dekker, New York, 1991.
- [11] M.M. Rao and Z.D. Ren, Applications of Orlicz Spaces, Marcel Dekker, New York, 2002.

- [12] S.M. Tabatabaie, A.R. Bagheri Salec, Convolution of two weighted Orlicz spaces on hypergroups. *Revista Colombiana de Matemáticas*, 8(1):115–120, 1961.
- [13] S.M. Tabatabaie, A.R. Bagheri Salec and M. Zare Sanjari, A note on Orlicz algebras, Operators and Matrices, 54 (2) (2020) 117–128.
- [14] S.M. Tabatabaie, A.R. Bagheri Salec and M. Zare Sanjari, Remarks on weighted Orlicz spaces on locally compact groups, Math. Inequal. Appl., 23 (3) (2020) 1015–1025.
- [15] W. Zelazko, On the algebras L^p of locally compact groups. Colloq. Math., 8(1):115–120, 1961.

(Alireza Bagheri Salec) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QOM, QOM, IRAN. *Email address*: r-bagheri@qom.ac.ir